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Abstract. We discuss the reaction π−e− → π−e−π0 with the purpose of obtaining information on the
γπ → ππ anomalous amplitude F3π. We compare a full calculation at O(p6) in chiral perturbation theory
and various phenomenological predictions with the existing data of Amendolia et al. By integrating our
theory results using Monte Carlo techniques, we obtain σ = 2.05 nb atO(p6) and σ = 2.17 nb after including
the dominant electromagnetic correction. Both results are in good agreement with the experimental cross-
section of σ = (2.11± 0.47) nb. On the basis of the ChPT results one would extract from the experimental

cross-section as amplitudes F
(0)extr
3π = (9.9 ± 1.1) GeV−3 and F

(0)extr
3π = (9.6 ± 1.1) GeV−3, respectively,

which have to be compared with the low-energy theorem F3π = e/(4π2F 3
π ) = 9.72GeV−3. We emphasize

the need for new data to allow for a comparison of experimental and theoretical distributions and to obtain
F3π with smaller uncertainty.

PACS. 11.30.Rd Chiral symmetries – 13.60.Le Meson production

1 Introduction and overview

Ever since the late 1960s anomalies [1–4] have played an
important role in our understanding of strong-interaction
physics. Anomalies arise if the symmetries of the La-
grangian at the classical level are not supported by the
quantized theory after renormalization, resulting in so-
called anomalous Ward identities [3]. For the case of chi-
ral SU(3)L × SU(3)R, the constraints due to the anoma-
lous Ward identities have efficiently been taken care of
through the effective Wess-Zumino-Witten (WZW) ac-
tion [5,6]. The WZW action is expressed in terms of the
pseudoscalar octet of Goldstone bosons and contributes
at O(p4) in the momentum expansion of chiral perturba-
tion theory [7] (for an overview see, e.g., refs. [8,9]). It is
determined through the underlying group structure up to
an overall constant [5] and, in the purely strong sector,
gives rise to interaction vertices involving an odd num-
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ber of Goldstone bosons (odd-intrinsic-parity sector) [6].
Using topological arguments, Witten has shown that the
WZW action is quantized, i.e. a multiple of an integer pa-
rameter n. By including a coupling to electromagnetism,
this parameter has been identified as the number of colors
Nc by comparing with the prediction of the QCD trian-
gle diagram for the (anomalous) decay π0 → γγ. Once
the overall factor is fixed, the (gauged) WZW action also
predicts other interactions such as the γπ+π0π− vertex.
However, it has recently been pointed out by Bär and
Wiese [10] that the Nc dependence in the pion-photon
vertices is completely canceled once the Nc dependence of
the quark charges is consistently taken into account. In
that sense, the width of the decay π0 → γγ is predicted
absolutely without reference to the number of colors. The
conclusion from their analysis is that one should rather
consider three-flavor processes such as η → π+π−γ or
Kγ → Kπ to test the expected Nc dependence [10,11]
in a low-energy reaction. However, by investigating the
corresponding η and η′ decays up to next-to-leading order
in the framework of the combined 1/Nc and chiral expan-
sions, Borasoy and Lipartia have concluded that the num-
ber of colors cannot be determined from these decays due
to the importance of sub-leading terms which are needed
to account for the experimental decay widths and photon
spectra [12].
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The decay π0 → γγ is the prime example of an anoma-
lous process [1,4] and its invariant amplitude can be writ-
ten as

Mπ0→γγ = iFπ(M2
π0)εµνρσq

µ
1 ε

ν∗
1 qρ2ε

σ∗
2 , ε0123 = 1. (1)

The prediction in the chiral limit, as obtained from the
WZW action, is given by [5,6,10]

Fπ(0) =
α

πF0
, (2)

where α = e2/4π ≈ 1/137, e > 0, and F0 denotes the
SU(3) chiral limit of the pion-decay constant [7]: Fπ =
F0[1 + O(mq)] = 92.4MeV [13]. Using eq. (2) with the
empirical value Fπ instead of F0, one obtains for the decay
rate

Γπ0→γγ =
α2M3

π0

64π3F 2
π

= 7.73 eV (3)

in agreement with the average value of ref. [13]:

Γπ0→γγ = (7.74± 0.55) eV. (4)

Corrections due to explicit chiral symmetry breaking have
been studied in refs. [14–19]. The most recent analyses
yield (8.06 ± 0.02 ± 0.06) eV [17] in SU(2)L × SU(2)R
chiral perturbation theory at O(p6) including electro-
magnetic corrections at O(e2p4), (8.60 ± 0.10) eV [18]
in the framework of a dispersion theory approach, and
(8.10 ± 0.08) eV [19] using U(3)L × U(3)3 chiral pertur-
bation theory at O(p6) in combination with large-Nc ar-
guments. As has been stressed in ref. [19], the individual
experimental results show a large dispersion and depend
on the specific reaction used to extract the amplitude.
The Primakoff Experiment at Jefferson Lab (PrimEx) [20]
aims at a determination of the width with an accuracy of
1.5% and will thus match the increased precision of the
theoretical analysis.

As mentioned above, the WZW action also predicts
more complicated processes such as the γπ+π0π− inter-
action and one clearly needs to confirm our picture of
both the leading-order term as well as the relevant cor-
rections. The invariant amplitude for γ∗(q) + π−(pb) →
π0(p2) + π−(p3) can be written as

Mγπ−→π0π−(q, pb; p2, p3) =

−iF3π(s2, t2, u2; q
2)εµνρσε

µpνbp
ρ
2p

σ
3 , (5)

where the Mandelstam variables are defined as s2 = (q +
pb)

2, t2 = (pb − p3)
2, u2 = (pb − p2)

2 and satisfy the
standard relation s2 + u2 + t2 = 2M2

π− +M2
π0 + q2.1 The

lowest-order prediction [O(p4)] is independent of s2, t2,
u2, and q

2 [5,6,21],

F3π =
e

4π2F 3
0

≈ e

4π2F 3
π

= 9.72 GeV−3. (6)

The physical threshold for q2 = 0 is at sthr
2 = (Mπ− +

Mπ0)2, tthr
2 = −Mπ−M

2
π0/(Mπ− + Mπ0), and uthr

2 =
Mπ−(M

2
π− −Mπ−Mπ0 −M2

π0)/(Mπ− +Mπ0).

1 Our notation and kinematics will be discussed in more de-
tail in sect. 2.

The amplitude F3π was measured by Antipov et al. [22]
at Serpukhov using 40 GeV pions. Their study involved
pion pair production by pions in the nuclear Coulomb field
via the Primakoff reaction

π− + (Z,A)→ π−
′
+ (Z,A) + π0, (7)

where Z and A denote the nuclear charge and mass
number, respectively. In the one-photon-exchange domain,
eq. (7) is equivalent to

π− + γ∗ → π−
′
+ π0 (8)

with an almost real photon (q2 ≈ 0). Diffractive produc-
tion of the two-pion final state is blocked by G-parity
conservation. At CERN COMPASS [23], a physics pro-
gram based on pion and kaon scattering from the nuclear
Coulomb field (Primakoff scattering [24]) has begun. The
program goals include state-of-the-art measurements of
the chiral anomaly transitions π− + γ∗ → π−

′
+ π0 and

K−+γ∗ → K−
′
+π0 as well as measurements of pion and

kaon polarizabilities and radiative transitions [25] and hy-
brid meson production [26].

The chiral anomaly sample of ref. [22] (roughly 200
events) covered the ranges s2 < 10M2

π and |t2| <
3.5M2

π < s2. The small t2 range selects events predom-
inantly associated with the exchange of a virtual photon,
for which the target nucleus acts as a spectator. Assuming
a constant amplitude F3π, the value

Fexp
3π = (12.9± 0.9± 0.5)GeV−3 (9)

was extracted from the experiment [22]. The considerable
discrepancy with the theoretical prediction of eq. (6) has
generated a lot of interest in clarifying the situation from
both the experimental and theoretical sides.

Higher-order corrections in the odd-intrinsic-parity
sector of ChPT have extensively been studied by Bijnens
et al. [15,27–29]. They included one-loop diagrams involv-
ing one vertex from the WZW term and tree diagrams
from the anomalous O(p6) Lagrangian [30–32], where the
parameters of the Lagrangian have been estimated via
vector-meson dominance (VMD) calculations. While the
higher-order corrections to Fπ of eq. (2) are small, for
F3π, they increase the lowest-order value between 7% and
12% within the kinematic range of the Serphukov exper-
iment [28]. Moreover, genuine one-loop corrections and
O(p6) tree-level contributions were found to be compara-
ble in size. It has also been stressed by Holstein [33] that
the experimental value of eq. (9) was obtained under the
assumption of a constant amplitude whereas a re-analysis
using a suitable dependence on the kinematical variables
would produce a lower value [33]

Fexp
3π = (11.9± 0.9± 0.5)GeV−3, (10)

and thus reduce the difference between theory and ex-
periment. A sophisticated analysis has been carried out
by Hannah [34] in the framework of a two-loop evaluation
[O(p8)] using dispersive methods. From a comparison with
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Fig. 1. Kinematics of the reaction e−(pa)+π
−(pb)→ e−(p1)+

π0(p2) + π−(p3).

the Antipov et al. data with the two-loop analysis leaving

F (0)
3π as a free parameter, Hannah obtained

Fexp
3π = (11.4± 1.3)GeV−3. (11)

By also including radiative corrections, Ametller et al. [35]
showed that the electromagnetic corrections generate a
sizeable increase in the Primakov cross-section, leading,
in comparison with eq. (11), to a further decrease

Fexp
3π = (10.7± 1.2)GeV−3. (12)

Finally, using an integral equation approach, Truong [36]
obtained

F3π = 11.2GeV−3. (13)

Further theoretical investigations of F3π include cal-
culations in the framework of dynamical constituent
quarks [37].

The limited accuracy of the existing data in combina-
tion with the various new calculations clearly motivates
improved and more precise experiments [23,38,39]. In a
recent JLab experiment [39], results on γ → 3π were ob-
tained from an analysis of γp → π+π0n data taken with
the CLAS detector. The photon energy was approximately
2 GeV. A Chew-Low analysis was used to extract F3π from
the cross-sections over a large kinematic range. Prelimi-
nary results were presented by B. Asavapibhop [40] and
an experimental paper is in preparation [41].

In this present work, we will focus on the reaction

π− + e− → π−
′
+ e−

′
+ π0, (14)

where an incident high-energy pion scatters inelastically
from a target electron in an atomic orbit, as shown in
fig. 1. This reaction and also K− + e− → K−

′
+ e−

′
+ π0

can, in principle, be studied with the (190–300) GeV pion
and kaon beams in the CERN COMPASS experiment [23].
New high-statistics pion data will allow for a determina-
tion of the form factor for πγ∗ → ππ0. The kaon beam
three-flavor process can as well test the expected Nc de-
pendence in a low-energy reaction [10,11].

A similar (pion) experiment has already been per-
formed at the CERN SPS [42]. The experiment did not
explicitly extract a value F exp

3π but rather claimed that

the experimental value was consistent with theory expec-
tations. Although the experimental backgrounds were de-
scribed in [42], comparisons of experimental and theoreti-
cal distributions versus different kinematic variables were
not shown; unfortunately, the data are no longer available
for such comparisons [43]. Without presenting such de-
tailed comparisons, Amendolia et al. reported 36 events
for the reaction π−e− → π−e−π0 corresponding to a
cross-section of (2.11± 0.47) nb. However, without statis-
tical tests such as the Kolmogorov-Smirnov distribution
test [44] comparing experimental and theoretical distri-
butions, it is not possible to be sure that background
events were not included in the cross-section value of
ref. [42]. The cross-section of π−e− → π−e−π0, in prin-
ciple, may also include ρ− production via the πe → ρe
transition [45]. However, threshold effects eliminate this
background for the 300 GeV pion beam energy of [42],
since an energy of Eπ ∼= 600 GeV is required to produce
a ρ with mρ = 770 MeV via πe→ ρe.

Our work is organized as follows. In sect. 2 we briefly
discuss the kinematics and formalism of π−e− → π−e−π0.
In sect. 3 we present the calculation of the anomaly ampli-
tude F3π within SU(3) ChPT, discuss some phenomeno-
logical approaches, and use Monte Carlo techniques to in-
tegrate the cross-section and compare it with the experi-
mental result of [42]. In sect. 4 we summarize our results
and draw some conclusions. Some technical details are rel-
egated to the appendices.

2 Kinematics and differential cross-section

for π−e−→ π
−e−π0

Following the nomenclature of ref. [46], the kinematics for
a+b→ 1+2+3 is shown in fig. 1 for an incoming pion that
scatters inelastically off an electron target and produces
an additional π0 in the final state: e−(pa) + π−(pb) →
e−(p1)+π0(p2)+π−(p3). We consider the target electron
to be at rest and the binding energy of the electrons bound
in an atom to be negligible relative to the incoming pion
energy.

We define the standard set of five invariants as [46]

s1 ≡ s12 = (p1 + p2)
2 = (pa + pb − p3)

2,

s2 ≡ s23 = (p2 + p3)
2 = (pa + pb − p1)

2,

t1 ≡ ta1 = (pa − p1)
2 = (p2 + p3 − pb)

2,

t2 ≡ tb3 = (pb − p3)
2 = (p1 + p2 − pa)

2,

s ≡ sab = (pa + pb)
2 = (p1 + p2 + p3)

2. (15)

The invariant s is fixed by the incident beam energy Ei,
s = M2

π + m2
e + 2Eime, and one is left with four scalar

variables s1, s2, t1, and t2.

The fourfold differential cross-section, expressed in
terms of the five invariants of eq. (15), is given by (see,
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π
− (pb)

e− (pa) e− (p1)

γ
∗

π
0 (p2)

π
− (p3)

Fig. 2. One-photon exchange approximation of the reaction
e−(pa) + π−(pb)→ e−(p1) + π0(p2) + π−(p3).

e.g., ref. [47])2

dσ

ds1ds2dt1dt2
=

|M|2
4(4π)4λ(s,m2

e,M
2
π)(−∆4)1/2

, (16)

where

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (17)

and where the Gram determinant is given by [46]

∆4 =
1

16

2m2
a 2pa · pb 2pa · p1 2pa · p3

2pa · pb 2m2
b 2pb · p1 2pb · p3

2pa · p1 2pb · p1 2m2
1 2p1 · p3

2pa · p3 2pb · p3 2p1 · p3 2m2
3

. (18)

The factor 1/16 has been extracted for later convenience.
The expressions of the scalar products entering eq. (18) in
terms of the invariants of eq. (15) are given in eq. (A.1).

In the one-photon exchange approximation (see fig. 2)
the total invariant amplitude M can be written as

M = −iF3π(s2, t2, u2; q
2)εµFµ, (19)

where εµ = eū(p1)γ
µu(pa)/q

2 is the virtual photon polar-
ization vector (q = pa − p1) and

Fµ ≡ εµνρσp
ν
bp

ρ
2p

σ
3 . (20)

The squared matrix element of eq. (16) involves the con-
traction of the standard lepton tensor known from the
one-photon exchange approximation in electroproduction
processes,

ηµν =
(

2pµap
ν
1 + 2pµ1p

ν
a + q2gµν

)

, (21)

with the hadronic tensor and is given by

|M|2 =

(

e

q2

)2

|F3π|2 ηµνFµFν =

(

e

q2

)2

|F3π|2
(

4pa · F p1 · F + q2F · F
)

. (22)

The explicit expression for eq. (22) is given in appendix B.

2 Our normalization of the electron states and of the Dirac
spinors is given by

〈~p ′, s′|~p, s〉 = 2E(~p )(2π)3δ3(~p ′ − ~p )δs′s,

ū(~p, s′)u(~p, s) = 2meδs′s.

3 Theoretical description of the F3π

amplitude

In this section we describe the theoretical input to our
analysis of the reaction π−e− → π−e−π0. Since we work
in the one-photon exchange approximation, it is sufficient
to consider the transition-current matrix element

〈π0(p2), π
−(p3)|Jµ(0)|π−(pb)〉 =

F3π(s2, t2, u2; q
2)εµνρσp

ν
bp

ρ
2p

σ
3 ,

where Jµ is the electromagnetic current operator (in-
cluding the elementary charge). In the isospin-symmetric
limit, F3π is a completely symmetric function of the Man-
delstam variables s2, t2, and u2. In the physical region,
the Mandelstam variables satisfy the standard relation
s2 +u2 + t2 = 2M2

π− +M2
π0 + q2. We will lay emphasis on

a calculation within the framework of chiral perturbation
theory at O(p6) but will also discuss the results of some
(more) phenomenological approaches. This will allow us
to have an estimate of effects which would be subsumed
in terms of O(p8) and higher.

3.1 Chiral perturbation theory at O(p6)

Besides the neutral-pion decay into two photons, the am-
plitude for γ+π− → π0+π− is of prime interest for testing
our understanding of anomalous Ward identities. In the
momentum and quark-mass expansion, its leading-order
contribution is of O(p4) and originates from the Wess-
Zumino-Witten action [5,6]. The interaction Lagrangian
relevant in the presence of external electromagnetic fields
(described by the vector potential Aµ) is given by [5,6,9]

Le.m.
WZW = −eAµJ

µ + i
e2

16π2
εµνρσ∂νAρAσ

×Tr
[

2Q2(U∂µU
† − U †∂µU)

−QU †Q∂µU +QUQ∂µU
†
]

, (23)

where Q = diag(2/3,−1/3,−1/3) denotes the quark-
charge matrix and

U = exp

(

i
φ

F0

)

, φ =

8
∑

a=1

λaφa , (24)

contains the Goldstone boson fields. The current

Jµ =
εµνρσ

16π2
Tr
(

Q∂νUU
†∂ρUU

†∂σUU
†

+QU †∂νUU
†∂ρUU

†∂σU
)

, (25)

by itself is not gauge invariant and the additional terms
of eq. (23) are required to obtain a gauge-invariant action.
The first term of eq. (23) gives rise to the 3φ+ γ coupling
(see fig. 3)

L3φ+γ
WZW = ie

εµνρσ

8π2F 3
0

AµTr(Q∂νφ∂ρφ∂σφ), (26)
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π−

γ ∗

π−

π0

WZW

Fig. 3. WZW diagram obtained from eq. (26).

whereas the second is responsible for the π0 → γγ decay
not discussed in this paper.

Weinberg’s power counting scheme [7] establishes a
connection between the chiral expansion and the loop ex-
pansion. Since the anomalous sector only starts at O(p4),
the contribution at O(p6) results from either one-loop
diagrams with exactly one vertex from the WZW term
or tree-level diagrams with exactly one vertex from the
anomalous Lagrangian at O(p6). In order to determine
the one-loop contributions we need, besides eq. (23), the
WZW contribution involving 5 Goldstone bosons,

L5φ
WZW =

1

80π2F 5
0

εµνρσTr(φ∂µφ∂νφ∂ρφ∂σφ), (27)

and the lowest-order Lagrangian in the presence of an elec-
tromagnetic field,

L2 =
F 2

0

4
Tr[DµU(DµU)†] +

F 2
0

4
Tr(χU † + Uχ†), (28)

where the relevant covariant derivative is given by DµU =
∂µU + ieAµ[Q,U ] and χ = 2B0M contains the quark-
mass matrix M and B0 is related to the scalar quark
condensate in the chiral limit. The most general anoma-
lous Lagrangian at O(p6) has recently been derived in
refs. [31,32]. According to table V of ref. [31], seven struc-
tures have the potential of contributing to 3φ+γ vertices.
In principle, the corresponding low-energy coupling con-
stants should be calculable from the underlying theory.
However, since we cannot yet solve QCD, the parame-
ters are either taken as free parameters that are fitted to
experimental data or are estimated from models such as
meson-resonance saturation [48,49].

In what follows, we will make use of the SU(3) version
of chiral perturbation theory, because this will allow us in
future calculations to make contact with other anomalous
processes involving in addition kaons. Moreover, we note
that previous calculations atO(p6) [28] were performed for
real photons, q2 = 0, because the amplitude was embed-
ded in a Primakoff reaction, where the virtual photon of
the Coulomb field of a heavy nucleus is quasi real. For our
reaction such an approximation is not admissible which
we will also explicitly see when we discuss the results.

The relevant one-loop diagrams are shown in figs. 4, 5,
and 6 and fall into two distinct groups. The first category
just includes one graph (fig. 4) whose loop is attached to
one single vertex (the loop is composed by one internal line

π−

γ ∗

π−

π0

aWZW

Fig. 4. One-loop diagram obtained from expanding the first
term of eq. (23) to fifth order in the Goldstone boson fields and
contracting two lines to form a loop.

π−

γ ∗

b

π−

π0

a

WZW

2

Fig. 5. One-loop diagram obtained from contracting two lines
of eq. (27) with the two lines of the 2φ+ γ vertex from L2 to
form a loop.

so to speak), while in the second category the loop always
binds two different vertices together (the loop is therefore
composed of two internal lines). Moreover, at O(p6) one
obtains a contact contribution shown in fig. 7. Combining
the O(p4) and O(p6) results, multiplying with a factor of√
Zπ for each external pion line, and renormalizing the

coefficients of the O(p6) Lagrangian, the result of the one-
loop calculation in SU(3) ChPT at O(p6) is given by [50]:

F3π(s2, t2, u2; q
2) =

e

4π2F 3
π

(

1 + CM2
π

M2
π + Cq2q

2

+
1

32π2F 2
π

{

s2 + u2 + t2
3

ln

(

µ2

M2
π

)

+ q2 ln

(

µ2

M2
K

)

+
5

9
(s2+u2+t2+3q2) +

4

3

[

F (s2,M
2
π) + F (t2,M

2
π)

+F (u2,M
2
π) + 3F (q2,M2

K)
]

})

. (29)

The constants CM2
π

and Cq2 are linear combinations

of renormalized low-energy coupling constants L̂6,ε
i of

the most general odd-intrinsic-parity Lagrangian at
O(p6) [30–32,50],

CM2
π

= 512π2(L̂6,ε
13 − L̂6,ε

14 − 2L̂6,ε
5 − L̂6,ε

6 ),

Cq2 = −512π2

3
(L̂6,ε

13 − L̂6,ε
14 ). (30)

These coefficients still depend on the renormalization scale
µ but in such a way that the scale dependence of the
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π−

γ ∗

π−

b

π0

a

2

WZW

π−

γ ∗

π0

b

π−

a

2

WZW

π−

γ ∗

b

a

π−

π0

WZW 2

Fig. 6. One-loop diagrams obtained from contracting two lines of eq. (26) with two lines of the 4φ vertex from L2 to form a
loop (cuts in the s2, t2, and u2 channels, respectively).

π−

γ ∗

π−

π0

6

Fig. 7. Contact diagram obtained from L6.

logarithms in eq. (29) is precisely compensated. The func-
tion F originates from a standard one-loop integral of
mesonic chiral perturbation theory and is given by

F (a,m2) ≡ m2
(

1− a

4m2

)

J (0)
( a

m2

)

− a

2
,

J (0)(x) ≡
∫ 1

0

dz ln[1 + x(z2 − z)− i0+] =



















−2− σ ln
(

σ−1
σ+1

)

(x < 0)

−2 + 2
√

4
x − 1 arccot

(
√

4
x − 1

)

(0 ≤ x < 4)

−2− σ ln
(

1−σ
1+σ

)

− iπσ (x > 4)

,

with σ(x) ≡
√

1− 4/x for x /∈ [0, 4].
Up to now, we have carried out everything which is

necessary to meet the requirements of a consistent O(p6)
calculation within the framework of mesonic ChPT. How-
ever, our result still depends on two unknown parameters
(CM2

π

and Cq2) which prevent us from predicting observ-
ables such as the total cross-section or distributions. Of
course, these low-energy coupling constants (LECs) can in
principle be determined within appropriate experiments.
Here, we actually move on and estimate the constants by
using theoretical means which evidently have to go beyond
mesonic ChPT. The LECs are supposed to include what-
ever QCD information on all particles which do not belong
to the Goldstone boson octet. At low energies the lightest
are expected to be significant and we are thus led to con-
sider the effects due to the vector mesons [48,49]. For that
purpose we made use of the nonlinear chiral Lagrangian of

ref. [51], evaluated the tree-level diagrams contributing to
γ∗ + π− → π0 + π− involving internal vector meson lines,
and expanded the propagators to be able to collect the
arising O(p6) pieces (for later purposes we also consider
the expressions keeping the full propagators). A compari-
son (matching) with the polynomial p6 pieces of the most
general anomalous Lagrangian yields the estimate

L̂6,ε
5 = − 3

1024π2m2
V

= L̂6,ε
13 , L̂6,ε

6 = −L̂6,ε
14 = 3L̂6,ε

5 .

(31)
Using mV = mρ = mω in SU(3) results in

CM2
π

=
3

2m2
ρ

, Cq2 =
2

m2
ρ

. (32)

Instead of expanding the vector-meson propagators in the
vector-meson saturation calculation, we could also keep
the complete propagators. This would correspond to the
replacement

CM2
π

M2
π + Cq2q

2 =
3M2

π + 4q2

2m2
ρ

→

1

2

(

s2
m2
ρ − s2

+
t2

m2
ρ − t2

+
u2

m2
ρ − u2

)

+
3

2

q2

m2
ω − q2

(33)

in eq. (29). We then obtain some estimate of higher-order
terms beyond O(p6).

A full calculation of all O(e2) radiative corrections as
well as the isospin symmetry breaking effects due to the
different u- and d-quark masses is beyond the scope of the
present paper. As discussed in ref. [35], the most impor-
tant electromagnetic correction originates from a photon-
photon fusion into a neutral pion (see fig. 8) yielding an
additional contribution of the type

∆F (e2)
3π =

e

4π2F 3
π

(

−2e2F 2
π

t2

)

. (34)

Due to the 1/t2 pole of the exchanged photon, eq. (34)
becomes important for small values of t2. Note that in-
cluding the single diagram of fig. 8 does not lead to a
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π−

γ ∗

π−

γ *

π0

2

WZW

Fig. 8. Electromagnetic correction.

conflict with gauge invariance. On the other hand, other
electromagnetic corrections were found to be very small in
ref. [35], where the authors concluded that their full cal-
culation can be very well reproduced by adding only the
contribution of eq. (34).

3.2 Phenomenological approaches

In our analysis we will also compare data with phe-
nomenological calculations using three different forms of
the transition-current matrix element:

1. Phenomenological ansatz of Terent’ev [21]:

F3π(s2, t2, u2; q
2) =

F (0)
3π

[

1 +∆ρ

(

s2
m2
ρ − s2

+
t2

m2
ρ − t2

+
u2

m2
ρ − u2

)

+∆ω
q2

m2
ω − q2

]

. (35)

Here, the multiplicative constant F (0)
3π refers to the low-

energy prediction of eq. (6) and the variation of the
function F3π is supposed to come mainly from vector-
meson-exchange diagrams. The parameters ∆ρ (∆ω)

implicitly contain factors of 1/F (0)
3π and are related to

the partial widths Γ (ρ+ → π+π0) and Γ (ρ → πγ)
[Γ (ω → e+e−) and Γ (ω → 3π)]. In the numerical
analysis we make use of mρ = 770 MeV and mω = 782
MeV. Comparing eq. (35) with eq. (33) would result in
∆ρ ≈ 1/2 and ∆ω ≈ 3/2 in comparison with ∆ρ . 1/2
and ∆ω ≈ 2.6 of ref. [21].

2. Pole model of Rudaz including vector-meson domi-
nance (VMD) [42]:

F3π(s2, t2, u2; q
2) = F (0)

3π

m2
ω

m2
ω − q2

m2
ρ

3

×
[

1

m2
ρ − s2

+
1

m2
ρ − t2

+
1

m2
ρ − u2

]

. (36)

3. VMD model including the effects of final state p-wave
ππ scattering [33]:

F3π(s2, t2, u2) = −
1

2

e

4π2F 3
π

×
[

1−
(

m2
ρ

m2
ρ − s2

+
m2
ρ

m2
ρ − t2

+
m2
ρ

m2
ρ − u2

)]

×
(

1−s2/m2
ρ

D1(s2)

)(

1−t2/m2
ρ

D1(t2)

)(

1−u2/m
2
ρ

D1(u2)

)

, (37)

where

D1(a) = 1− a

m2
ρ

− a

96π2F 2
π

× ln

(

m2
ρ

M2
π

)

− 1

24π2F 2
π

F (a,M2
π) . (38)

Note that the ansatz of eq. (37) has only been derived
for real photons, q2 = 0, and we therefore have to
expect some shortcomings in the description of γ∗ +
π− → π0 + π−.

3.3 Results and discussion

Using Monte Carlo techniques we determined the total
cross-section based on eq. (16) for kinematical variables
inside the region specified by

0.0184GeV2 < s1 < 0.186GeV2, (39)

0.0754GeV2 < s2 < 0.325GeV2, (40)

−0.236GeV2 < t1 < −0.001GeV2 = tcut
1 , (41)

−0.269GeV2 < t2 < 0, (42)

which are the minimal (maximal) values obtained from the
equations for the kinematical boundaries (see ref. [46] and
eq. (C.3)). For the generated invariants the positivity of
−∆4 of eq. (16) is checked and events with positive ∆4 are
rejected. In order to check the Monte Carlo calculations
we also compared the result with an explicit numerical
integration using the simplifications of a constant F3π and
m2
e → 0 (see appendix C).
The results for the total cross-section are shown in

table 1. The first column denotes the model/theory and
the corresponding parameters used; the second column
contains the integrated cross-section for each case with

F (0)
3π fixed to e/(4π2F 3

π ) = 9.72GeV−3. The cases 1), 4),
5), and 6) of table 1 were already used in fig. 4 of ref. [42]
and our corresponding cross-sections are in reasonably
good agreement. In the third column we show the respec-
tive physical threshold amplitudes. In the chiral limit,
the threshold amplitudes should reduce to the low-energy
prediction e/(4π2F 3

0 ) of eq. (6). In this context it is
important to realize that, in general, the dependence
of the threshold amplitude on M 2

π results from both
kinematical variables and explicit symmetry breaking.
The models of 2)–6) can only account for the first type
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Table 1. Total cross-section for π−e− → π−e−π0 as obtained in different models and chiral perturbation theory (see text).
The third column contains the physical threshold amplitudes for q2 = 0. In the last column we made use of the experimental

result (2.11± 0.47) nb of ref. [42] to convert this into the value for F
(0)extr
3π which would be extracted based on the given model:

F
(0)extr
3π = 9.72

√

σexp/σmodel GeV−3. Here we follow the common practice to quote the extracted values. The error only reflects
the experimental error and does not include any error estimate implied by the models. We stress that in the framework of ChPT
the overall factor of eq. (29) is not a free parameter. Therefore, the “extracted” values for the ChPT calculation have to be
taken with a grain of salt (see the discussion in the text).

Model/theory Cross-section F thr
3π F

(0)extr
3π

[nb] [GeV−3] [GeV−3]

1) F3π = e

4π2F3
π

= 9.72GeV−3 1.92 9.7 10.2± 1.1

2) Terent’ev, eq. (35) with ∆ρ = 0.5 and ∆ω = 0 2.80 10.3 8.4± 0.9
3) Terent’ev, eq. (35) with ∆ρ = 0.5 and ∆ω = 1.5 2.62 10.3 8.7± 1.0
4) Terent’ev, eq. (35) with ∆ρ = 0.35 and ∆ω = 0 2.51 10.1 8.9± 1.0
5) Terent’ev, eq. (35) with ∆ρ = 0.35 and ∆ω = 3.2 2.18 10.1 9.6± 1.1
6) Rudaz, eq. (36) 2.36 10.0 9.2± 1.0
7) ChPT at O(p6) (eq. (29)) without q2-dependence 2.33 10.4 9.2± 1.0
8) ChPT at O(p6) (eq. (29)) with q2-dependence 2.05 10.4 9.9± 1.1
9) ChPT at O(p6) (eq. (29)) with q2-dependence
plus electromagnetic correction of eq. (34) 2.17 12.1 9.6± 1.1
10) ChPT at O(p6) with modified dependence of eq. (33) 2.83 10.5 8.4± 0.9
11) Holstein, eq. (37) 3.05 10.4 8.1± 0.9

of dependence and the corresponding modification is of
the type const × M2

π/m
2
ρ, where the relevant constant

depends on the parameters of the model and is of the
order of 1. The results of 7)–11), in addition, contain
corrections from Goldstone boson loops of the form
const′ ×M2

π/(4πFπ)
2 which are of both kinematical and

chiral-symmetry–breaking type. In the calculation of 9),
the 1/t2 singularity due to the electromagnetic correction
of eq. (34) generates a 17% increase in units of e/(4π2F 3

π ),
but when integrated over t2 ultimately leads to a less
pronounced contribution to the cross-section. Finally, in
the last column we have also included the overall factor
F (0)extr

3π which one extracts based on the experimental

result (2.11±0.47) nb of ref. [42] if one treats F (0)
3π as a free

parameter in the respective model. The error in F (0)extr
3π

only reflects the error in the experimental cross-section
and does not include any error estimate implied by the
models. However, we explicitly do not advocate such an
extraction as a strict test of the low-energy theorem of
eq. (6), because it introduces a bias in how the chiral limit
is approached. Rather, at this point, the only rigorous ap-
proach consists of using the chiral expansion as in eq. (29)
and confronting it directly with experimental results.

Using the estimate of eq. (32) for the parameters CM2
π

and Cq2 , we obtain as the ChPT result at O(p6)

σ = 2.05 nb. (43)

By also including the most prominent electromagnetic cor-
rection [35] in terms of photon-photon fusion into a neutral
pion the result increases slightly:

σ = 2.17 nb. (44)

Both results are in excellent agreement with the experi-
mental result (2.11 ± 0.47) nb of ref. [42]. In general, the

Fig. 9. The distributions of events as functions of the invari-
ants (a) s1, (b) s2, (c) t1, and (d) t2 as obtained using chiral
perturbation theory at O(p6) (see eq. (29)) with the low-energy
constants of eq. (32) and including the most prominent elec-
tromagnetic correction of eq. (34).

conceptual advantage of the ChPT calculation over the
remaining empirical models is that it is the only calcula-
tion which naturally incorporates both genuine quantum
effects (loops) and higher-order corrections (as estimated
from the VMD saturation). Moreover, in principle, a con-
trolled improvement is possible by performing a complete
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Fig. 10. Differential cross-section dσ/dt1 as a function of t1
using chiral perturbation theory at O(p6) (see eq. (29)) includ-
ing the most prominent electromagnetic correction of eq. (34).
The low-energy constants of eq. (32) have been fixed using
mV = 0.2 GeV (triangles), mV = mρ (circles), and mV = 2mρ

(squares), respectively.

O(p8) calculation, whereas the remaining calculations suf-
fer from the absence of a systematic method of improve-
ment. A comparison of 8) with 7) clearly shows the neces-
sity to include the consequences resulting from the virtu-
ality of the exchanged photon. This can also be seen from
the transitions 2) to 3) or 4) to 5) in the calculations using
Terent’ev’s model. On the other hand, the spread of the
obtained cross-sections is an indication that higher-order
terms (in the chiral expansion) may play an important
role. This conjecture is supported by an analysis for a pion
beam energy of 150 GeV which leads to total cross-section
results between 0.17 nb and 0.21 nb, i.e., the results scat-
ter substantially less than for the higher energy.

In fig. 9 we show the generated distributions of events
as functions of the invariants s1, s2, t1, and t2 as obtained
using chiral perturbation theory at O(p6) (see eq. (29))
with the low-energy constants of eq. (32) and the most
prominent electromagnetic correction of eq. (34). The re-
sults are based on the generation of 100 000 events re-
stricted to the kinematic region

2M2
π < s1 < 10M2

π ,

4M2
π < s2 < 10M2

π ,

−0.015GeV2 < t1 < −0.001GeV2,

−0.269GeV2 < t2 < 0. (45)

The regions have been chosen such as to avoid the 1/t1
pole and to be far enough away from the ρ-meson pro-
duction threshold. In fig. 10 we show the differential
cross-section dσ/dt1 as a function of t1 for three different
choices of the low-energy constants of eq. (32). Clearly,
mV = 0.2 GeV (triangles) would correspond to unreal-
istically large higher-order terms which is supported by
the drastically different behavior for this case. Figure 11

Fig. 11. Differential cross-section dσ/dt1 as a function of t1
using chiral perturbation theory at O(p6) (see eq. (29)) with
the low-energy constants of eq. (32) without (circles) and in-
cluding (triangles) the most prominent electromagnetic correc-
tion of eq. (34).

Fig. 12. Differential cross-section dσ/dt1 as a function of
t1 for the model of Terent’ev, eq. (35) with ∆ρ = 0.35 and
∆ω = 3.2 (triangles), ChPT at O(p6) (eq. (29)) plus electro-
magnetic correction of eq. (34) (circles), and the model of Hol-
stein, eq. (37) (squares).

illustrates how the inclusion of the electromagnetic correc-
tion of eq. (34) affects the differential cross-section dσ/dt1.
The calculational errors in the plotted points of figs. 10
and 11 range from 0.1% at t1 = −0.015 GeV2 to 0.3%
at t1 = −0.001 GeV2. Finally, fig. 12 contains a compar-
ison of different (model) calculations for the differential
cross-section dσ/dt1. Here, the calculational errors in the
plotted points range from 0.03 % at t1 = −0.015 GeV2 to
0.07 % at t1 = −0.001 GeV2.
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4 Conclusion

We have studied the reaction π−e− → π−e−π0 with
the purpose of obtaining information on the γπ → ππ
anomalous amplitude F3π. In table 1 we have summa-
rized the results of various phenomenological models and
of a full calculation at O(p6) in chiral perturbation the-
ory for the total cross-section using the kinematical con-
ditions of ref. [42]. In particular, by integrating the ChPT
results using Monte Carlo techniques we obtain σ =
2.05 nb at O(p6) and σ = 2.17 nb after including the
dominant electromagnetic correction. Both results are in
good agreement with the experimental cross-section of
σ = (2.11 ± 0.47) nb [42]. On the basis of the ChPT re-
sults one would extract from the the experimental cross-

section as amplitudes F (0)extr
3π = (9.9 ± 1.1) GeV−3 and

F (0)extr
3π = (9.6 ± 1.1) GeV−3, respectively, which have

to be compared with the low-energy theorem F3π =
e/(4π2F 3

π ) = 9.72GeV−3. We emphasize the need for new
data to allow comparison of experimental and theoretical
distributions and to obtain F3π with smaller uncertainty.
In order to further support our findings and to obtain F3π

with a smaller uncertainty, it would be useful for future
experiments to also consider distributions such as those
shown in figs. 9-12.
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Appendix A. Scalar products

The ten scalar products appearing in the calculation of
the differential cross-section of eq. (16) may be expressed
in terms of the five standard invariants of eq. (15) as [46]

2 pa · pb = s−m2
a −m2

b ,

2 pb · p2 = s2 + t2 − t1 −m2
3 ,

2 pa · p1 = m2
a +m2

1 − t1 ,

2 pb · p3 = m2
b +m2

3 − t2 ,

2 pa · p2 = s1 + t1 − t2 −m2
1 , (A.1)

2 p1 · p2 = s1 −m2
1 −m2

2 ,

2 pa · p3 = s− s1 + t2 −m2
b ,

2 p1 · p3 = s− s1 − s2 +m2
2 ,

2 pb · p1 = s− s2 + t1 −m2
a ,

2 p2 · p3 = s2 −m2
2 −m2

3 .

Appendix B. The squared amplitude

In order to evaluate eq. (22), one makes use of the double
epsilon expression

εµνρσεµ
′ν′ρ′σ′ = −det(gαα′) ,

α = µ, ν, ρ, σ , α′ = µ′, ν′, ρ′, σ′ . (B.1)

The evaluation of the expression in brackets in eq. (22) is
straightforward but tedious and we only quote the final
result:
(

2pa · F p1 · F +
1

2
q2F · F

)

=

(

2pa · p1+
1

2
q2
)

[p2
b(p2 · p3)

2 + p2
2(pb · p3)

2 + p2
3(pb · p2)

2

−p2
bp

2
2p

2
3 − 2pb · p2pb · p3p2 · p3]

+2pa · pbp1 · pb[p2
2p

2
3 − (p2 · p3)

2]

+2pa · p2p1 · p2[p
2
bp

2
3 − (pb · p3)

2]

+2pa · p3p1 · p3[p
2
bp

2
2 − (pb · p2)

2]

+2(pa · pbp1 · p2+pa · p2p1 · pb)(pb · p3p2 · p3−pb · p2p
2
3)

+2(pa · pbp1 · p3+pa · p3p1 · pb)(pb · p2p2 · p3−pb · p3p
2
2)

+2(pa · p2p1 · p3+pa · p3p1 · p2)(pb · p2pb · p3−p2 · p3p
2
b).

(B.2)

We deliberately did not express the scalar products p2
b ,

p2
2, and p2

3 in terms of the masses, because it is then
straightforward to apply eq. (B.2) for other processes
involving particles with different masses, such as, e.g.,
γ∗(q) +K−(pb) → π0(p2) +K−(p3). Note that eq. (B.2)
is manifestly symmetric under both the exchange p1 ↔ pa
and the exchange of any two elements of {pb, p2, p3}. Fi-
nally, using eqs. (A.1) the scalar products in eq. (B.2) may
be expressed in terms of the invariant variables of eq. (15).

Appendix C. Direct calculation

Using the covariant normalization for both bosons and
fermions, the differential cross-section for e−(pa) +
π−(pb)→ e−(p1) + π0(p2) + π−(p3) can be written as

dσ =
1

4

1
√

(pa · pb)2 −m2
eM

2
π

1

(2π)5

×|M|2 δ4(pa + pb − p1 − p2 − p3)
d3p1

2E1

d3p∗2
2E∗2

d3p∗3
2E∗3

,

(C.1)

where we consider the final-state pions in their rest frame
(denoted by ∗) and the ejected electron in the laboratory
frame. Integration with respect to ~p ∗3 and E∗2 yields

dσ =
1

4

1
√

(pa · pb)2 −m2
eM

2
π

1

(2π)5
|M|2 d3p1

2E1

|~p ∗2|dΩ∗2
4
√
s2

.

Let the pion beam define the positive z axis. Using
∫ 2π

0

d3p1

E1
= πdE1dp1z
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in combination with

2|~pb|p1z = s2 −M2
π −

t1
2m2

e

(m2
e + s−M2

π),

2meE1 = 2m2
e − t1,

me|~pp| =
√

(pa · pb)2 −m2
eM

2
π ,

we obtain

πdE1dp1z =
π

4

dt1ds2
√

(pa · pb)2 −m2
eM

2
π

and can thus write

dσ =
1

4

1
√

(pa · pb)2 −m2
eM

2
π

1

(2π)5
|M|2

× πdt1ds2

4
√

(pa · pb)2 −m2
eM

2
π

|~p ∗2|dΩ∗2
4
√
s2

. (C.2)

To obtain the kinematic boundaries of s2 and t1 one can
either solve for t1 in terms of s2, or vice versa [46],

t±1 = m2
a +m2

1 −
1

2s
[(s+m2

a −m2
b)(s− s2 +m2

1)

∓λ1/2(s,m2
a,m

2
b)λ

1/2(s, s2,m
2
1)],

s±2 = s+m2
1 −

1

2m2
a

[(s+m2
a −m2

b)(m
2
a +m2

1 − t1)

∓λ1/2(s,m2
a,m

2
b)λ

1/2(t1,m
2
a,m

2
1)], (C.3)

where λ(x, y, z) is defined in eq. (17).

In order to test our numerical integration programs,
we evaluated eq. (C.2) under the following simplifying as-
sumptions: We neglected terms containing the square of
the electron mass and we assumed F3π to be constant
(see eq. (6)). Under these assumptions we obtain for the
angular integral

∫

dΩ∗2(4pa · Fp1 · F + t1F · F ) =

−π
6
t1(s2 − 4M2

π)
[

t21 + 2t1(s− s2 −M2
π)

+(s−M2
π)

2 + (s− s2)
2
]

. (C.4)

Inserting eq. (C.4) into eq. (C.2) and using eq. (22) results
in

dσ

dt1ds2
= − 1

6144π3

1

(s−M2
π)

2
|eF3π|2

(s2 − 4M2
π)

3/2

√
s2t1

×[t21 + 2t1(s− s2 −M2
π) + (s−M2

π)
2 + (s− s2)

2]

(C.5)

for m2
e → 0 and F3π = const. We first integrate eq. (C.5)

with respect to t1 from t−1 = −(s − M2
π)(s − s2)/s to

t+1 = tc1, where t
c
1 is an experimental cut on the maximal

value of t1:

∫ tc
1

t−
1

dt1
dσ

dt1ds2
=

1

6144π3

1

(s−M2
π)

2
|eF3π|2

(s2−4M2
π)

3/2

√
s2

×
[

1

2
(t−1

2 − tc1
2) + 2(s− s2 −M2

π)(t
−
1 − tc1)

+
[

(s−M2
π)

2 + (s− s2)
2
]

ln

(

t−1
tc1

)]

,

(C.6)

where 4M2
π ≤ s2 ≤ sc2 = s[1 + tc1/(s−M2

π)] as implied by
the physical boundary conditions. A numerical integration
of

σ(tc1) =

∫ sc
2

4M2
π

ds2

∫ tc
1

t−
1

dt1
dσ

dt1ds2
(C.7)

yields σ(tc1) = 1.864 nb for tc1 = −0.001 GeV2 which agrees
within less than 0.5% with the Monte Carlo result 1.855 nb
(we used Mπ = 139.57 MeV).
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August 1994, Jülich, Germany, edited by H. Machner,
K. Sistemich (World Scientific, Singapore, 1995) hep-
ph/9409307.

39. R.A. Miskimen, K. Wang, A. Yegneswaran (spokesper-
sons), Thomas Jefferson National Accelerator Facility Ex-
periment E94015, Study of the Axial Anomaly using the
γπ+ → π+π0 Reaction Near Threshold.

40. B. Asavapibhop, Study of the Axial Anomaly in
the γp → π+π0n Reaction at Low t Using the
CLAS and the Photon Tagger, PhD thesis, Univer-
sity of Massachusetts, Amherst, Massachusetts, 2000,
http://www.jlab.org/Hall-B/clas g1/anomaly/.

41. R.A. Miskimen, private communication.
42. S.R. Amendolia et al., Phys. Lett. B 155, 457 (1985).
43. R. Tenchini (CERN), private communication.
44. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T.

Vetterling, Numerical Recipes in Fortran: The Art of
Scientific Computing, 2nd edition (Cambridge University
Press, Cambridge, 1992).

45. J.M. LoSecco, Phys. Rev. D 51, 6572 (1995).
46. E. Byckling, K. Kajantie, Particle Kinematics (Wiley,

New York, 1973).
47. C. Unkmeir, A. Ocherashvili, T. Fuchs, M.A. Moinester,

S. Scherer, Phys. Rev. C 65, 015206 (2002).
48. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael,

Phys. Lett. B 223, 425 (1989).
49. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B

321, 311 (1989).
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